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1. Introduction

We consider the recovery of 5° mean gravity anomalies from the doppler
signal count in the ATS-6/GEOS-3 satellite to satellite tracking (SST) (NASA,
1974; Kaula, 1969). The doppler count was obtained at Rosman, N.C. in the
'destruct' mode (NASA, 1976). The actual data will be described in Section 3.
Eddy and Sutermeister (1975, p. 43) have shown that the range-rate sum, Rs
(Martin, 1972; Hajela, 1974) is directly obtained from the doppler count. We
accordingly consider Rs to be the observations, which were used to predict
gravity anomalies using least squares collocation, according to procedures
developed in Rummel, Hajela and Rapp (1976). These will be briefly recapitu-
lated in Section 1.1.

The present study follows the investigations by Hajela (1977) and considers
improved procedures. The main change is the computation of the auto-covar-
iances of the ATS-6/GEOS-3 'line-of-sight' residual accelerations in the anom-
alous potential field, and the computation of the cross-covariances of the re-
sidual accelerations with the 5° mean anomalies. This, and the other changes
will be outlined in Section 1.2, and developed more fully in Section 2.

The numerical evaluation of these procedures will be described in
Section 3. The mumerical evaluation is based on the initial state vectors for
ATS-6 and GEOS-3 for some of the 'arcs' used by Marsh et als. (1977), which
were kindly supplied by Marsh (private communication, 1978). The predicted
anomalies will be compared with those obtained from the altimeter data (Rapp,
1977), from the terrestrial observations (Rapp, private communication, 1978),
and also against the anomalies implied by the PGS-110 gravity field (Lerch,
1976). The last was the gravitational model employed in the 'determination'
of the initial state vectors (Marsh et als., 1977).

1.1 Recapitulation of Previous Investigations

The procedure developed by Rummel et als. (1976) was to integrate the
equations of motion of ATS-6 and GEOS-3 in a low degree and order reference
gravitational field (specifically, potential coefficients up to degree and order
12 were used). This provided the inertial position and veloc ity coordinates of
the satellites at any given time, and from which a computed value of range-rate
sum R§ was obtained in the reference field, U.

(1.1) B = #(Ry + Rge + Rou+ Ru)

where subscripts 1 and 2 refer to ATS-6 and GEOS-3 respectively, and subscripts
u and d refer to upward and downward range-rates (Hajela, 1974, p. 8).
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It was assumed that the reference field was adequate to fully describe the
motion of the ATS-6 satellite at a height of about 35,000 km above the earth's
surface. If we then subtract Ry computed in the reference field U from the
observed value of range-rate sum, Ry, in the actual gravitational field of the
earth, W, the residual range-rate R

(1. 2) R = R’ - Rf

describes the range-rate of GEOS-3 to ATS-6 in the anomalous gravitational
field, T:

(1.3) T=W-U

The residual range-rate R was numerically differentiated to obtain residual
accelerations R in the anomalous field T. Knowing the angle a between the
'line of sight' GEOS-3 to ATS-6 and the radial direction at GEOS-3 from the
satellites ephemeris in the reference field, we have the approximate relationship
(for details, see Section 2.1):

(1.4) T. £ R/cosa
where T, = 3T/3r is the first derivative of T in the radial direction at GEOS-3.

A set of T. values, when the sub-satellite point of GEQS-3 is in the imme-
d?te vicinity of a 5° anomaly, were then used to predict the residual anomaly,
Ag', in the reference field U, using least squares collocation (Moritz, 1972):

A
(1.5) Ag' = g&"r ((_—:'r’rr.'- 2)-1 I

where gn--n- is the auto-cevariance matrix of vector T:, QA;!'TP is the transposed
vector of cross-covariances of T, with the mean gravity anomaly, and Disa
diagonal matrix re“presenting the variance of observational noise in T..” The
predicted value Ag' of the residual anomaly in the reference field could be
compared with its expected value, E(Ag'):

(1.6) E(Ag) = Ag - Ag

where Ag represents the gravity anomaly referred to an ellipsoidal field,
e.g. Geodetic Reference System 1967, and available from, say, Rapp (1977);
and Ag, is the gravity anomaly implied by the potential coefficients (12, 12) of
the reference field U. (Rummel et als., 1976, p. 20).

A
The estimated standard deviation, Opr » of the predicted anomaly is given
by:

‘3 T -1
(1.7 Oact = Co = Cassr, C*7 Carr,
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where C, is the variance of the residual anomalies of that block size, and
(1.8) C* = Cryr, + D
and other notation is the same as in equation (1.5).

It was found in Rummel et als. (1976) that the matrix C* could not be
inverted for zero standard deviation of noise in T.. The inversion was numer-
ically stable for standard deviation between 0.5 to 1 mgals, but the predicted
anomaly A‘g' was damped, with low root mean square (R.M.,S,) value, as the
standard deviation was increased to 2 mgals or larger. It was also found that
it was adequate to use T values within a spherical distance of 3°5 from the
center of the 5° anomaly block, and very little improvement was found if
further values within a spherical distance of 5° or 705 from the center of the
block were used. Finally, it was adequate to use T, values ata time interval
of 30 seconds, instead of every 10 seconds.

These procedures (ibid., 1976) were developed for simulated data with no
observational noise in R, and further with no assumed errors in the initial state
vectors of the two satellites. The effect of these errors was investigated by
Hajela (1977). The observational noise in R was filtered out by approximating
it by a cubic spline in the least squares sense, giving a smoothed representation
of R which could then be analytically differentiated to give R. It was found that
a suitable representation was obtained if the knots of the spline were specified
at a fixed interval of 60 to 80 seconds. A shorter spacing gave oscillating
values of R, while a longer spacing gave damped values. The knots of the
spline are defined where two adjacent cubic polynomials, and their first and
second derivatives, assume the same value. It was also found that R values
at either ends of the spline had spuriously large values, and the spline should
thus be fitted to a larger data span than what is needed for the prediction of
anomalies.

The 'determination' of the initial state vectors was a critical procedure.
These are determined through an iterative process for a minimum variance of
misfit of observed value (of range, range-rate, or range-rate sum, etc.) after
rejecting outlying observations, from the modelled value based on a specified
force model and the initial state vectors in the previous step of the interation.
The iteration is continued till successive corrections to the initial state vectors
lie within a specified tolerance (usually 2%). The converged value of the initial
state vectors is strongly influenced by the type of observations, and their total
time span. Range-rate sum observations were the least sensitive to determining
initial state vectors of the two satellites, and a short time span such as 60
minutes may lead to a very wrong state vector (Hajela, 1977, p. 16). Even if
several different types of observations are used, a short time span of observa-
tions may seriously bias the determination of initial state vectors. Unavoidably
small errors of 10-20 meters in position and 1-2 cm/sec. in velocity coordinates
in the determination of, the initial state vectors lead to a linear error in the re-
sidural accelerations R (ibid., 1977, p. 64).

we




1.2 Scope of Current Investigations

In the above mentioned investigations, we had only considered the radial
derivative T, of the anomalous potential T. This led to simple computation of
the required covariances (Rummel et als., 1976, p. 12), but it had an unduly
restrictive implicit assumption that at GEOS-3, at a height of about 850 km
above the earth's surface, the derivatives of T perpendicular to the radial
direction were zero. We will now also consider these derivatives of T along the
latitudinal and longitudinal directions, T, gnd T) respectively in computing
the covariances of residual accelerations R. This follows the treatment by
Rummel and Rapp (unpublished notes, 1977) and will be detailed in Section 2.

Secondly, we will consider if we can extract from the raw R data 'better'
values of R, by approximating the raw R data by a cubic spline with variable
spacing of the knots. With a fixed spacing of the knots, the spline fits the
entire data span in the least squares sense. We may start with a fixed spacing,
and then let one knot vary at a time for a least squares fit in two adjacent
cubic polynomial intervals of the spline. The entire data span can then be
'swept' successively from one end to the other achieving 2 minimum variance
fit in each portion of the data span successively. This follows the treatment of
deBoor and Rice (1968).

Thirdly, we will consider the removal of a linear trend from R values due
to unavoidable errors in the initial state vectors of ATS-6 and GEOS-3. This
follows the treatment of Moritz (1972, p. 78), where the 'observations' may be
first 'centered' by the removal of the effect of systematic parameters before
using them in least squares collocation.

Fourthly, we will attempt to examine if a set of T, values, which could
be used to predict several neighboring anomalies, would cause unduly large
correlations in the predicted anomalies, This question may be raised in
deciding if a certain anomaly block size may not be recovered from given data,
say at GEOS-3 location, if the correlation coefficients between neighboring
anomalies are 'large’',

These four points will be discussed in Section 2. Some numerical results
will be presented in Section 3, where additional numerical considerations will
also be mentioned. The first three points were numerically evaluated in the
force model and with initial state vectors as used in Marsh et als., (1977). How-
ever, as there was some delay in the receipt of this data, the fourth point
regarding the correlation between the predicted anomalies was examined with
respect to data used in Hajela (1977), which was based on a slightly different
force model. However, as the latter was also based on real R, data, the
conclusions are equally valid for improved force fields.




2, Residual Accelerations of GEOS-3 in the Anomalous Field

We consider that the inertial position and velocity coordinates of ATS-6
and GEOS-3 have been obtained in the reference field (complete to degree and
order 12) at tlmes correspondlng to the observed range-rate sum RS, and a
computed value RS in the reference field has also been obtained at these times.
Then the residual range-rate R

(2.1) R = R - RS
is the time derivative of the line-of-sight range from GEOS-~3 to ATS-6 in the
anomalous potential field T in view of equations (1.1) to (1.3), considering that

the position and velocity coordinates for the ATS-6 satellite are fully described
in the reference field.

2.1 'Line-of-Sight' Residual Acceleration

We would now explicitly consider the residual line of sight acceleration of
GEOS-3 in the anomalous field T as the time derivative of R in equation (2.1).
Let the inertial position coordinates of ATS-6 and GEOS-3 be denoted by
X1, Y1, Z; and X;, Y, Z3 respectively. Then

1
. d d <
(2.2) R = & IBal = Gl(%- %)%+ (Y1~ Ya)* 4 (2 Z0)°]

= —1- [— (% - o)k - (Y1 - Ya) %o - (% - Za) 2 |

where we note that R is a scalar .quantity, |R,,| is the magnitude of the line of
sight vector GEOS-3 to ATS-6, Xa, Ya Za are the velocity components of
GEOS-3 in the anomalous field T (and not in the reference field in view of
equation (2.1) ), and that the velocity components X1, YI, 21 of ATS-6 in the
anomalous field are zero as we consider the motion of ATS-6 to be fully described
by the reference field. Equation (2.2) may be rewritten as:

R i N
where eg, is the unit vector GEOS-3 to ATS-6, R, is the residual velocity

vector of GEOS-3 in the anomalous field, and the notation . between the vectors
represents their scalar product.

Taking the time derivative of R in equation (2. 2) and considering equation
(2.3), we get R as:

Bon d_ - ey A 1 g_
.4 Re Gk= [Bu &) Ggipe) & 18
+ [<x1 Xa) Xo- (Vi -Ya) Vo - (2~ &)Z.+&+Y.+Z.]
Bn
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(2.4)
(cont.) = -

1

et

Ra,|

Ra

"'ITJ[' Ray ﬁa * |3=|a]

*€s t+ T‘Bl;'l—‘[ lga'a & RS]

where we note that R is also a scalar quantity like the residual range-rate R,
R, is the residual acceleration vector of GEOS-3 in the anomalous field (and
not in the reference field), [l_!gl is the magnitude of the velocity vector of
GEOS-3 in the anomalous field, and we note again that the velocity components
X Y1 ’ Z1 of ATS-6 in the anomalous field are zero. This equation has aiso

been derived by Rummel et als, (1978),

The second term on the right hand side of equation (2. 4) is negligibly
small. Considering |Rg,| as about 35,000 km, residual range-rate R as
about 0.1 cm/sec, and an arbitrarily large value of |R3| as 2 cm/sec, this
term is of the order of [1/35,000x10°)[4-.01]x 10° ~ 1 x 10~ ° mgals.

Equation (2.4) may therefore be rewritten with a negligibly small approx-

imation for the 'high-low' case of ATS-6/GEOS-3 as:

(2.5) R =

which shows that the time derivative of residual range-rate may indeed by termed
as the 'line of sight' component of the residual acceleration of GEOS-3 in the
anomalous field. If we consider that at GEOS-3 location at a height of about

850 km above the earth's surface, the components of VT in the latitudinal and
longitudinal directions are zero (or, in other words, the deviation of vertical

is zero with respect to the reference field described by potential coefficients
complete to degree and order 12), then equation (2. 5) degenerates to the approx-
imate equation (1.4) used in previous investigations. We would however now
explicitly consider YT to be an arbitrary vector, and not confined to the radial

direction.

2.2 Direction Cosines of 'Line-of-Sight' in Earth Fixed Coordinate System

-Rq

* 83

= -3I° 8w

The GEODYN program (1976, actual version used was 7603. 2) was used
to generate the ephemeris of satellites in an inertial true-of-date coordinate
system. The line of sight vector from GEOS-3 to ATS-6 in this coordinate sys-
tem would have to be rotated by the true of date Greenwich apparent siderial
time (GAST) to express it in an earth fixed coordinate system (GEODYN, 1976,
Sec. 3). This was needed to determine the direction cosines of the line of sight
with respect to the latitudinal, longitudinal, as well as the radial directions at
GEOS-3. However, the value of GAST (= 6;) is not output by the Geodyn pro-
gram with the inertial true of date output of the ephemeris of the satellites. But
as the Iatitude, longitude and height (¢,A,h) of the satellites is output by the
program in earth fixed coordinate (E, F.C.) system, 6, could be computed
by knowing the coordinates of GEOS-3 in the two coordinate systems at the same




Let the E, F,C, system values of GEOS-3 be denoted by X¢ , Y¢, Z¢ and
the inertial coordinate system values at the same time bedenoted by X, ,Y,,Z,.
These are related through 6, by:

Xe = Xicos 6, +Y, 8in§
(2. 6) Ye = - X sin6 +Y, cos 6
Z[ = Z|

from which § could be solved for. The value of X:,Y¢,Z; was available
through well known formulas, e.g. (Heiskanen and Moritz, 1967, p. 182):

Xe = (N +h)cosegcos X
(2.7 Y: = (N+h)cosesin A
Ze = [N(1-€*)+h]sing

where N is the radius of curvature at ¢ in the prime vertical direction and e

is the square of the first eccentricity of the ellipsoid on which ¢,A and h are
defined.

After obtaining the line of sight vector in E. F,C. system, the projection
of unit line of sight vector eg, along E.F.C. axes e,,e,,e, is given by:

e = (X - X)/ |Ba1|
(2. 8) e, = (Y1 - Ya)/ |Rsi
e, = (Z, - Z3)/ |Rg,|

where X,,Y,,Z, and Xg,Y;,Z; are now the coordinates of ATS-6 and GEOS-3
in earth fixed coordinate system, and |Rz,| is the magnitude of the line of sight
vector; and

(2.9) €a; = €l +ej + ek

where i, j, k are the unit vectors in the E, F.C. system.

Let the unit vectors along the geocentric spherical (r,¢", A) coordinate
system at GEOS-3 be denoted by e, &, e, , where the geocentric latitude ¢
is obtained from:

(2.10) tang” = Z./(X& + YH)*

The unit vector in the (r,®,A) and the (X,Y, Z) inthe E, F.C. system are




P

related through (Heiskanen and Moritz, p. 230):

e = cos¢ ces )i +cosy sin)j +singk
(2.11) €p = -8ing cos )i - sing’ sin)j +cos ¢k
e = -8inAi + cos Aj

If the line of sight vector forms angles «, B, ¥ with the (r,,)\) axes,
then the direction cosines a, b, ¢ of the line of sight vector are given by the
scalar product of equation (2.9) with equations (2. 11), i.e.,

a=cos =€3," € = €,C08( COSA+ e,cos®8ini+ e, sing’
(2.12) b=cos B =eg, ° B e,8in® cos A - eysin@’sin A+ e,cos®’
C=CoSY =€5," €) = - ex8in) + €,C08 A

with e;, e,, e, given from equation (2. 8).

2.3 Covariances of Line-of-Sight Residual Acceleration

We express the gradient VT of the anomalous potential in terms of its
components &, , 6¢;. 6, inthe (r,#,\) coordinates (Heiskanen and Moritz,
1967, p. 233)

(2.13) VT = 6;er + GQD'E'P' + GAE)\

- A @ sl O
(19 3 o dr '’ 6¢ r d¢ ' o rcos@ oA ' OF
(2.15) 6, = T , 6@' it 4 ’ st -rYn

by using equation (6.49") of Heiskanen and Moritz (1967, p. 235), where Y is now
the normal gravity at the GEOS-3 location, where the deviation of vertical com-
ponents in the latitudinal and longitudinal directions are givenby £ and 7.

Using equations (2.5), (2,12), (2.18), (2.15), the line of sight residual ac-
celeration R (=T, for ease of notation) is given by:

(2.16) R

T, = -YT-es, = -aT, +byf +cyn

The autocovariances of R = T , between two points denoted by subscripts
i and j are then given by 'propogation' of covariances of T, , £, n by:

8 By TR YT % 45 PR P e PO T 0




8.17) l (Tes s Teg)s (Tea s € 4)s (Trso M) | - 2,
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+
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+

CyYs[-a1(Tryymy) +bs¥1(E1s My) +C5¥ 1 (Ms My)]

where for ease of notation, we have expressed the covariances by () BN
Cei,ey = (E15Ey), ete.

The covariances of T., £, 7 were computed from subroutine COVAX
(Tscherning, 1976) based on model 2 of anomaly degree variances (Tscherning
and Rapp, 1974). The subroutine gives units of covariances of £ and n in
(arc seconds)®, To convert these into units of (mgals)® for (T 21 Tpy) » We note
that expressions (£1,£:)s(1sM5)s(Mes€;)s(Nys7M,y) are being multiplied by % v, .
As the subroutine computes the normal gravity in units of msec”?, multiplication
of the covariances of § and n by (10°/0"")® ensures units of (mgals)® for eq-
uation (2.17). Here p’  is the value of 1 radian in arc seconds. The units of
the covariances of T, were already computed in (mgals)® according to the mod-
ification described in Rummel et als. (1976, p. 14).

The cross-covariance between R = T ¢ ata point i and a gravity anomaly
block was computed by numerical integration of the point covariance function over
the mean anomaly block. A point covariance function, say at the center of anomaly
block with R at point i will be given by the following, using equation (2. 16):

(2.18) Cros, a8 = (Ty1088) = -8((Tey, 88) +by¥1(€1,48) + i ¥y (M, Ag)
where the covariances have been denoted by ( )e

The computation of the autocovariance matrix of a setof R (= T 4) points
used for predicting a residual mean anomaly, and the cross-covariance vector of
T, with the anomaly would then be done as indicated by equations (2. 17) and (2. 18).
And, the equations (1.5) and (1.7) for the prediction, A‘g’, of residual mean anom-
aly, and its estimated standard deviation 0, would now be modified as:

A

(2.19) A = Q&'r; (Craory + 2)’1 Ty = Cprernt g In
A

(.20) O3 = Co = Cpeory €*~ Cauony




2.4 Numerical Determination of Line-of-Sight Residual Acceleration

Before we numerically differentiate the residual range-rate R to obtain
R, we need to filter the raw R values (equation (2.1)) of the observational
noise. We use a cubic spline because of its well-known 'minimum norm' and
'best approximation' properties (Ahlberg, Nilson and Walsh, 1967, Chap. III)
to approximate the raw R values in the least squares sense. See Sjogren et
als. (1976) for similar application of cubic splines. The cubic spline is a set
of cubic polynomials with adjacent polynomials meeting at the spline 'knots',
where the cubic polynomials and their first and second derivatives assume the
same value, making the spline a smooth twice continuously differentiable func-
tion.

Given m data points I.h = f(t); i=1, ..., m and n spline knots
o, k=1,. .., n§ n<m-2 such that:

(2.21) t, = t; fork=i=1 and k=n, i=m

we require to solve for the coefficients ¢* of spline S* = S*(t):

(2.22) S*(t) = c*,,3 & + c*,9d® + %, d + S*(t);

d

t-te, t, st <t,,, k=1, ... ,n-1, (and
S* (), S*(t), S*”(t;) are then contimious from the right),
so that the weighted Lg norm ||f - S*||; is minimized, or:
g In—1 tt+1 : 4
(2.23) e-s*3 = Z J' w(t) [f(t) -6*(t)]®dt = minimum,
k= fo‘

and we replace the integral by summation over the data points in each of the
intervals I, =t, <t < t,,,

(2.24) lf-s*|8 = § ws vi® = min., where
1=1
V1=V(tg)'f(t‘)-s*(t,),lal,....m

(2.25) Wi-W(t‘)=(tg+1 s tg-l)/(t.‘tﬂ,); i=2,...,m-1; and
wi=(la-t)/(-t), Wa=(th-t_,)/(h-t)

(i.e. for equally spaced data points, the end points are given one-half the
weight of the other points (deBoor and Rice, 1968) ).

The spline function in equation (2.22) gives the smoothed value of R
after filtering the observational noise. The smoothing depends on the inter-
val between the knots, giving greater smoothing as the interval between the
koots is increased.

«10-
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The residual acceleration R is obtained by differentiating the spline func-
tion in equation (2. 22):

2,26 S*'(t) = 3cH,5d° + 2c%,ad + c*,, ;
(2. 26) (

d

t-k’tkst<tk+1’k=1. o o o 'n-l

We first consider the case when the location of knots is fixed a-priori, and
this is most conveniently equally spaced. The coefficients of the spline functions
were solved using subroutines ICSFKU, and the smoothed values of R and R by
using subroutines ICSEVU and DCSEVU (IMSL, Lib. 1, Edn. 6, 1977). For
details of the algorithm see deBoor and Rice (1968a). As an example, Figure 2,1
shows a plot of raw and smoothed values of R every 10 seconds for GEOS-3
revolution 439 for a-priori fixed spline knots at a nominal spacing of 100 seconds.
(The actual spacing was 108 seconds with 11 spline knots for a data span of 1080
seconds.) The corresponding R values are shown in Figure 2.2. For later
processing, only the central values were used leaving out the first and last
4 to 5 minutes of data to avoid any spurious spline slopes at either end of data
span. The initial state vectors for revolution 439 were supplied by Marsh
(1978). The initial state vectors and the force model were the same as used in i
Marsh et als. (1977). |

We next consider the case when the number of spline knots as determined
above remains fixed, and we now try to obtain the optimal location for the knots
by varying them one at a time.to minimize the least squares error in equation
(2.24). This was done using subroutine ICSVKU (IMSL, 1977). The process |
starts with the rightmost interior knot and proceeds sequentially to the left. The |
location of each knot is varied in turn to minimize the least squares error as a
function of that knot. The whole process is iterated till one of several criteria |
of convergence is met. The criteria are chosen to achieve a desirable accuracy |
without doing an excessive amount of wasteful computation. (For details, see . 4
deBoor and Rice (1968b) ). The location of knots at a nominal 100 seconds |
interval (Figures 2.1 and 2, 2) is now allowed to change without changing the |
total number of knots. The optimal location of knots with subroutine ICSVKU
and the R. M.S. value of residuals after spline fit are compared in Table 2.1
with the previous case of fixed knots, |

«1l=
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Table 2.1 Determining Optimal Location of Spline Knots.
GEOS-3 Revolution 439.

Fixed Knots Variable Knots
No. of spline knots 11 11
Spacing of spline knots (sec.) 108 116, 105, 34, 218, 62,
: 163, 74, 24, 108, 177
R.M.S. raw R data 0.119 cm/sec 0.119 cm/sec
R. M.S. smoothed R data 0.065 cm/sec 0.068 cm/sec
R. M.S. residuals after spline fit 0.100 cm/sec 0.098 cm/sec

A plot of raw and smoothed R data for the case of variable spline knots
is shown in Figure 2.3, and the corresponding R values in Figure 2.4, On
comparing these figures with Figures 2.1 and 2, 2, we note a closer fitting of
observed R with variable spline knots but it results in spurious exaggeration
in the slope of the spline function as seen in the R plot. Similar results were
obtained for different initial spacing of fixed knots from 60 to 180 seconds for
several different GEOS-3 revolutions. As our interest is in the slope of the
spline and not in the spline function itself, we find that a variable knot spacing
does not extract better R values with the noisy R data. It is of importance
to obtain smoothed R values from the raw data instead of a closer fitting. We
would therefore use the spline with fixed knots to obtain smoothed R values.

A nominal 100 seconds spacing was found to give optimum smoothing for the
data used in Section 3. A shorter spacing caused greater oscillations in R
plots, while larger spacing of spline knots damped the R values. See Appen-
dix for comparison with data obtained by Marsh et als. (1977).

2.5 Removal of Linear Trend in Residual Accelerations due to Errors in
e e e ——————ccc SN e o ~rrore M
Initial State Vectors

We had found in previous investigations (Hajela, 1977, p. 64) that re-
sidual errors in the initial state vectors cause a linear bias in the residual
accelerations R. We would like to have as good an estimate of the initial
state vectors of ATS-6/GEOS-3 with multiple type of tracking observations
as possible. But due to inadequacy of the force model itself, and chiefly due
to a limited time span of observations used for converging the initial state
vectors, there would unavoidably be errors of the order of several meters
in position and of the order of one cm/sec. in velocity elements of the initial
state vectors. There would then be a linear trend in the R values due to
'systematic parameters' and the R (=T,) values should be 'centered'
(Moritz, 1972, p. 78) before using them ln equation (2.19).

Let us consider that T, values are obtained from several GEOS-3
revolutions each having regidual errors in its initial state vectors. To fix
our ideas, consider data from three revolutions, and to make the example
more specific, let us consider a number of data points from each revolution
as 3, 4and 2. Then:

-14-
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Tgre =cn + Cp(i-1)+ 8 +n 3 i=1,2,3 for revolution 1

(2.37) Ty = cpy + Oa(l=1)+ 8, + n, ; i=1,2,8,4 for revolution 2

T g4

Cy + Cag(i-1)+ 8, + ng ; i=1,2 for revolution 3

where s, and n, are the 'signal' and the observational noise for each data
point value Ty, ; c;;, cy3 are the two parameters for the linear trend in IZ
for data points in the first revolution. €1 is a zero offset and c,, is the slope
of the linear trend. Similarly Cs; » Cgp for the second revolution, and so on.
Using notation in Moritz (1972),

| (2.28) x = (Tgas Tgas o o vy Tye)s X = (€115C13+C315Ca5Cay 5 Cg3); and

gAg = 1 0 with the remaining elements

‘ 1 1 as zero.
i 1 2
I 1 0
} 1 1
? 1 2
[ 1 3
| 1 0
:L j 1 1

Equation (2. )B) can be easily extended to any number of points in each

revolution, say N1, N2, N8, (N;2 2); and to any number of revolutions. Also,
if instead of every Ty value, say at 10 seconds interval, we use only every
third value at 30 seconds interval, then the second column on the right hand

side of equation (2.27), and every second column in A matrix in equation (2. 28)
needs to be multiplied by the interval of data points (e.g, INT = 3).

Then from equation (6. 19) of Moritz (1972):

X = (ATC*A)" ATc*'x

(2.29) g*= gtz,fz + 2
I* = x-AX

and we may use the 'centered' observations T*, instead of Ty for predicting
anomalies in equation (2. 19).

The correction to T, to obtain T*;, i.e. the value of AX in equation
(2.29) depends on the geometry of the location of data points in forming Cyy,ry.
Also, the stability of inversion of C* depends on the size of the matrix, 1.e,
the mumber of data points and the assumed standard deviation of the data points in
forming D. These considerations will be discussed in Section 3. 3. However,

a representative set of values for AX is given in Table 2.2, which was used for

e
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predicting 5° residual anomaly number 598 with data up to a spherical distance
of 3.°5 from the center of anomaly block from GEOS-3 revolutions 240, 439,
254 and 453 at 30 seconds data interval, (Details of anomalies and revolutions
will be given in Section 3. The initial state vectors and the force model were
the same as used in Marsh et als. (1977) ), The standard deviation of data
points was taken as 0.6 mgals.

Table 2.2 Removing Linear Trend from Residual Accelerations

1

Llevolution No. No. of Data Pts, T,(mgals) Correction (mgals) T* (mgals,
240 1 0.0 -0.1 -0.1
2 -0.5 0.2 ~0.3
3 -0.7 0.5 ~0.2
—._1‘
439. 1 0.4 -0.3 0.1
2 -0.3 -0.1 -0.4
3 -0.6 0.2 -0.4
4 -0.6 0.5 0.1
254 1 -0.1 0.1 0.0
2 0.1 0.3 -0.2
3 0.6 -0.7 0.1
453 1 1.0 -1.1 0.1
2 0.9 -1.0 -0.1
3 0.8 -1.0 -0.2

We find that the predominant effect is to dampen the values of residual
acceleration. Various combinations of data points over different anomaly blocks
were tried, but invariably in all cases the value of residual accelerations was
damped in trying to remove the linear trend, which would occur due to residual
errors in the initial state vectors. This finally resulted in low R, M.S. values
of the predicted anomalies. We have to conclude that the equation (2.29) is not
sensitive enough to remove only the linear trend, and a considerable portion
of the signal is also removed. The results in Section 3 would thus be reported
without trying to remove the linear trend, and using equation (2. 19) with T,
and not T*,.

2.6 Correlation Between Predicted Anomalies
The variance of one predicted anomaly is given by equation (2.20). If we

predict several anomalies together, the variance-covariaace matrix Egs of the
predicted anomalies will be given by (Moritz, 1972, p. 33):

-18-




(2. 30) Es = Cpomge = Cpwrrp (Crgry *+ D' Crany

where C is the variance-covariance matrix of residual anomalies of the
specifleﬁ% ock size. Cpg,1y I8 the matrix with rows giving the covariance
vector C Moty Of equa%i?n@ 20) for each anomaly with data points T Ty, and
similarly the columns of matrix Cry, As are the covariance vectors C i, 1y
Of equatlon (2 20) The diag'onal jements of E ss and gAl *As are the same
6% , and C, im equation (2. 20) for different anomalies. The correlation
coeffic ient matrix of the predicted anomalies is obtained by dividing each row
and column of Ess by the square root of the diagonal element, i.e. &Av .
The elements of various matrices on the rigat hand side of equation (2. 30) may
by computed as discussed in Section 2. 3.

However, for the purposes of numerical tests to be presented below, we
used the data in Hajela (1977), l.e. covariances of T, were used analogous to
equation (1.7) instead of covariances of Ty . In view of the very small corre-
lations found, the tests were not repeated with T, values,

We first used all the data in five GEOS-3 revolutions at a time interval of
30 seconds, a total of 83 data points in the final solution of Hajela (1977, pp. 69,
72) to predict 8 residual 5° anomalies. With a standard deviation of 1 mgal for
T. values, the largest correlation coefficient between the predicted anomalies
was 0,003, and it became 0.04 when the standard deviation was taken as 1.5
mgals. The correlations are negligible as firstly, both the matrices on the right
hand side of equation (2. 30) are diagonal dominant, and secondly, the differencing
of the matrices makes the off-diagonal terms of Ess very small.

To show this specifically, we extract the upper triangular portion of the
three matrices C s pc » Cas,t, C* »A¢ and Ess, for the southerly four
anomalies only and show these In Table 2': 3, along with the correlation coeffi-
cient matrix. The values reported are for the case of standard deviation of
T. as 1.5 mgals.

Table 2.3 Correlations Between Predicted 5° Residual Anomalies

210 27 16 16

1. Chq,Ac in mgals® 230 -24 12
226 33

226

7 81 28 W%

2. Chs,1,C* 'Cr,,pe in mgals® 87 -13 23
g R orE N 72 26
61
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8. Ess = (1-2) inmgals®

132 -5 -13 =7
143 -11 -12

154 7

166

4, Correlation Coefficient Matrix

1 -0.03 -0.09 -0.05
1 -0.08 -0.08

1 0.04

1

We next examine if the correlation coefficients will increase if the
anomaly block size being predicted is decreased to 2.°5. First T, data from
5 GEOS-3 revolutions was used at 30 seconds interval to predict 16 2.° 5 anom-
alies occupying the same location as the 4 central 5° anomalies. Then the
number of data points was decreased by increasing the data interval from 30
The largest correlation coefficient between
predicted 2.° 5 residual anomalies are shown in Table 2.4. This is for 1 mgal
standard deviation of T, data., There was a slight increase in correlation
coefficient when the standard deviation was increased to 1.5 mgals.

seconds to 2 minutes to 4 minutes.

Table 2.4 Correlations Between Predicted 2.°5 Residual Anomalies

Data Intvl. No. of Data Pts. Largest Corrln. Coeff.
Min.
0.5 66 0.10
2 15 0.28
4 5 0.30

We find that through correlation coefficients between predicted anomalies
increase as the number of data points decrease, and more impertantly as the
anomaly block size is decreased, but the examination of correlation coefficients
is not a very sensitive test because of small off-diagonal terms in Ess by dif-
ferencing of two diagonal dominant matrices in equation (2. 30). The larger value
of the estimated standard deviation of the predicted anomaly is a better test. It
was about 10 mgals for 5° anomalies and about 15 mgals for 2.° 5 anomalies. The
latter value increased to about 19 mgals as the no. of data points was decreased

in Table 2.4.




3. Numerical Results

We now describe some numerical tests, which are limited in nature
due to the paucity of well-determined initial state vectors and thus a low in-
cidence of data directly over the anomalies being predicted. The data was
better than that used in Hajela (1977) in the sense that a better force model
PGS 110 (Lerch, 1976) was used to converge the initial state vectors with
adequate tracking observations (Marsh et als., 1977, p. 5). The R, M.S, value
of residual range-rate R, which will be reported later, was therefore smaller
than used earlier (Hajela, 1977, p. 47). The available data was however still
for those GEOS-3 revolutions, where the doppler signal was recorded in the
'destruct' mode. The observational noise for this type of data is expected to
be about four times larger than the 'mon-destruct' doppler data (Marsh et als.,
1977, p. 21). Also, the data was received rather late for the present study and
some discrepancies in the initial state vectors could not be reconciled in time.
Data from these revolutions could therefore not be used in the present study
( this will be described later in this report). However, sufficient data was an-
alyzed to test out the improved procedures as detailed in Section 2. 3.

3.1 Expected Value of Residual Anomalies

It was first intended to predict the same set of eight 5° anomalies used
in Hajela (1977). But these were shifted one block westwards to better utilize
the location of GEOS-3 revolutions for which the converged initial state vectors
were available. The value for these anomalies, Ag, , referred to Geodetic
Reference System, 1967 (GRS 67), were available in Rapp (1977) based on al-
timeter data, Their terrestrial value, Agr, (updated in June 1978) in GRS 67
system was also available (Rapp, private communication, 1978). From these
values, we subtracted the anomalies, Agy, implied by potential coefficients up
to degree and order 12 of PGS 110 field to obtain the residual anomalies Ag', ,
Ag't. For comparison, we also obtained the residual anomalies, Ag's, implied
by the potential coefficients in PGS 110 field of degree and order higher than 12.
Agy was computed using equation (4.8) of Rummel et als. (1976, p. 20).

(3.1 Ag's = Agr - Ogu, Ag't = Agr- Agu, Ag's = Ags - Agu

The residual anomalies Ag'., Ag'r, Ag's are given in Table 3.1.
These are the expected value E( Ag') of the anomalies with which the predicted
value &g’ is to be compared. The numbering of anomalies and their block
sizes are according to Rapp (1977). The standard deviation of these altimeter
and terrestrial anomalies was between 1 and 4 mgals.




Table 3.1 Expected Value of 5° Residual Anomalies

eq. No. @7 ©5 XS A§ Ag'i(mgals) Ag't(mgals) Ag' (mgals)

401 35 30 283 277 11.0 10.6 11.4
402 35 30 289 283 -11.0 -11,1 - 8.5
464 30 25 281 276 16.3 15.5 11.9
465 30 25 287 281 3.1 6.2 - 0.8
530 256 20 279 274 - 3.0 - 5.8 7.2
531 25 20 285 279 22,7 26.8 1.7
598 20 15 277 271 - 0.3 0.6 2.0
282 277 8.8 4,2 - 0.9

§ M.S. Value (mgals) ~ 11.8 12.7 7.1

3.2 'Observed' Value of Residual Line-of-Sight Accelerations

The converged initial state vectors in the PGS 110 field for GEOS-3 revolu-
tions used in Marsh et als. (1977, p. 26) were supplied by Marsh (private com-
munication, 1978). Ten GEOS-3 revolutions 231, 240, 254, 268, 439, 453, 695,
709, 737 and 758, whose ground tracks were in the vicinity of the anomalies in
Section 3.1, were chosen for the present study. The destruct mode doppler
data (NASA, 1975) for these revolutions was preprocessed (Martin, 1975) to
give range-rate sum (Rs) observations. These Rs values were then used in
the GEODYN program (1976, actual version used was 7603. 2) in the data reduc-
tion mode in the reference gravitational field U described by potential coeffi~
cients up to degree and order 12 in the PGS 110 field. The initial state vectors
of ATS-6/GEOS-3 were constrained to the values supplied by assigning them
very low variances. This gave us the inertial true of date ephemeris of the
satellites and their latitude, longitude and height, and the residual range-rate
R as in equation (2.1).

The R values were compared with those quoted in Marsh et als. (1977,
Appendix) and agreed within +0.01 cm/sec and less for 6 revolutions 240, 254,
439, 453, 737 and 758. The slight variation was perhaps due to differences
in applying lonospheric corrections during pre-processing. However, the R
values differed by about .02 cm/sec for revolution 231, about .03 cm/sec for
revolution 695, about .3 cm/sec for revolution 268 and about . 5 cm/sec for
revolution 709. The discrepancy in the last four revolutions was most likely
due to some wrong numbers in the initial state vectors used, but this could not
be reconciled in time for this study. Thus the R values in only the first six
revolutions was processed further,

About 20 minutes of raw R data in each revolution was approximated in
the least squares sense by a cubic spline with fixed knots at a nominal spacing
of 100 seconds, as described in Section 2.4. The time span for fitting the spline
was longer by about 4 to 5 minutes at each end, as the smoothed R values were
needed for only the central 10 minutes. This was to avoid any spurious exagger-
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ation in the spline slope (R) at the ends of data span. The R, M.S. value of raw
R, smoothed R, and the 'observational' noise filtered by the spline (R. M, S,
residuals after spline fit) are given in Table 3, 2.

Table 3.2 Smoothing of 'Observed' Residual Range-Rate R by Cubic Spline

Revolution R. M, S, Value in cm/seo.
No. Raw R Smoothed R  Residuals after Spline Fit
240 .116 . 069 .092
254 .086 .061 .061
439 . 119 .065 . 100
453 . 104 .074 .074
737 . 110 . 047 . 100
758 . 129 .103 .078

We note that the 'observational noise' is large as compared to the
smoothed R, and the signal noise ratio of 2:1 assumed in Marsh et als. (1977,
p. 15) is too optimistic for at least the revolutions in Table 3.2. The large
noise is not due to over-smoothing by the cubic spline function, but perhaps a
result of recording the doppler signal in the destruct mode. Several other
splines with fixed knots at 60, 80, 100 seconds etc, were tried with the present
data, but the R. M.S. value of residuals af ter spline fit did not change by more
than 4 to 6%. On the other hand, a closer fitting of raw R data led to spurious
oscillations in R, i.e. the slope of the spline.

The R values were obtained from the spline function representing smoothed
R values as in equation (2. 26), and this is the 'observed' residual line of sight
acceleration in Sections 2.1 to 2.3, These R (=Ty) values in each revolution
were then separately used to predict by equations (2.19) and (2. 20) those residual
anomaljes, whose centers were within a spherical distance of 7.°5 from the data
in the revolution. This showed by a rough comparison if the doppler data in any
revolution had any system bias, and hence poor R data, which would lead to a
poor recovery. Because of the iterative nature of converging the initial state
vectors, there is a possibility of system bias not becoming apparent, if the time
span for the fitted observations is only over one revolution. The comparison is
rough because we cannot expect a good recovery from only one revolution. But
it does hlghllght poor data by comparing the R, M.S, value of the predicted anom-
alies A'g' (equation (2.19) ) with the R, M.S. value of the expected anomalies
E(Ag') (equation (1.6) ), and by examining the R, M.S. value of anomaly discrep-
ancies €(Ag'):

(3.2) €(4g') = &' - E(Ag')

These are shown in Table 3.3 for each of the six revolutions.
<23~
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Table 3.3 Examining Residual Accelerations Separately in Each GEOS-3
Revolution by Predicting Anomalies

Revolution R.M.S. Value in mgals No. of Anom,

No. Expected Value Predicted Value Anom. Discrepancy

240 12 5 11 8
254 12 5 9 8
439 12 5 10 8
453 12 6 9 8
737 13 2 13 4
758 13 4 13 6

Beoause of comparatively lower R. M., S, value of predicted apomalies and
higher R.M.S. value of anomaly discrepancies, we decided to omit the R data
in revolutions 737 and 758 from the final solution. The subsatellite points for
GEOS-3 revolutions 240, 254, 439 and 453 are shown in Figure 3.1 at 30 seconds
interval with respect to the eight 5° anomalies being predicted. This is rather
sparse data, particularly as it senses the anomalies from almost the same lo-
cations in revolutions 240 and 439, and revolutions 254 and 453, the ground
tracks of these revolutions being quite close. We will first describe a few other
numerical considerations, and present the final solution in Section 3.4. A com-
parison of raw and smoothed R data, and R, used in this study with values
quoted in Marsh et als. (1977) is given in the appendix. The values of R agreed
within *0.5 mgals.

3.3 Numerical Considerations in the Prediction of Anomalies

It was found that the most critical test for the recovery of anomalies was a
low R.M.S. value of the anomaly discrepancies coupled with a closer agreement
of the R, M. S. value of the predicted anomalies to that for the expected values
(Table 3.1). Several tests were therefore carried out to examine the effect on
these two considerations of the size of area in which several anomalies may be
predicted simultaneously as in Section 2. 6. Other tests were conducted to ex-
amine the effect of different assumed standard deviation of R (=T,) data, and
the time interval of R data. Also the number of subdivisions of 5° mean
anomalies to numerically integrate the point covariances to obtain the covariance
for the mean anomaly., This was required in the computation of Cps,7z in
equations (2.19) and (2. 20) by a single numerical integration over the mean anom-
aly, and in the computation C, in equation (2.20) by a double numerical integra-
tion over the mean anomaly. A summary of these findings is presented below.

Firstly, it was found that the larger the area over which data was consid-
ered for the C‘ matrix, the poorer the anomaly recovery was. This was found
whenever several anomalies were predicted at a time from a larger block of T

-25-

. st o e e e e




data, It was therefore necessary to predict each anomaly separately considering
the data for a given spherical distance from the center of that anomaly block.
The same effect was also found when the extent of data was reduced for pre-
dicting one 5° anomaly block by considering data up to a spherical distance of
3.5 from the center of the block instead of 5° or 7.°5. This is obviously relatad
to the numerical stability of the inversion of C* matrix comprising of the point
covariances of T, at GEOS-3 altitudes. The "smaller the extent of data the mor2
numerically stable the inversion of c*.

The stability of inversion of C* was very strongly dependent on the as-
sumed standard deviation of T,. We recall from equations (2.19) and (2. 27)
that D was a diagonal matrix wlth each element being the variance of Ty ,
making C* a diagonal dominant matrix with increase in assumed standard
deviation. For standard deviation lower than 0. 5 mgals, C*~ -l was numer-
ically unstable, but with standard deviation higher than 1.5 mgals, c*~' was
damped. This directly effected the sensitivity of C Cas, 10 C*° -} with which i i)
data is multiplied in equation (2.10) to obtain the predicted value of the anomaly.
The optimum standard deviation of T, was dependent on the extent of T, data.
Several standard deviations were trled between 0 and 1.2 mgals in steps of 0.2
mgals. It appeared that a standard deviation of 0.6 mgals was optimum for data
upto3.°5 from the center of 5° anomaly block, while 1 mgal may be suitable for
data up to 7.°5 from the center of anomaly block.

The optimum interval of T, data was found to be 30 seconds with a linear
separation of about 1.°5. The R.M.S. value of anomaly discrepancies was about
the same whether the time interval of data was 30 seconds or 1 minute, but there
was a slight favorable increase in the R. M.S, value of predicted anomalies with
data interval of 30 seconds. Any further reduction in time interval would be
wasteful of computer time without proportionate benefit.

The estimated standard deviation 0&- in equation (2. 20) was not very
sensitive to the above tests. It would show slight decrease with the reduction
in extent of data, and slight decrease with the decrease in data interval to 30
seconds instead of 1 minute. It would also increase with increase in standard
deviation of T, data. However, O, Was quite sensitive to the multiple
'sensing' of the anomaly. It showeé definite improvement as dam from more
revolutions was used over an anomaly block,

For the numerical integration of point covariances to compute covariance
for the mean anomaly, the 5° block was first subdivided into 25 portions, That
is, the mean anomaly covariance was obtained as the mean of point covariance
computed at the center of each componeat 1° block. Later the 5° block was sub-
divided into 100 portions, which utilized the mean of 4 point covariances in each
component 1° block. There was only a slight difference in the covariance vector
Cps,7 and the related quantities, f.e. Cp, 1 C*™ and the predicted anomaly
Aé" in equation (2.19), or in the second term of the right hand side of equation
(2.20). But there was a marked reduction in C,, and therefore in the estimated




standard deviation 02,' of the predicted anomaly by about 2 to 3 mgals. Of
course, there was also a more than twice the increase in computer time, An
efficient strategy would therefore be to subdivide the 5° mean anomaly block
into 25 portions for the computation of C s, 74 » 2and into 100 portions for the
computation of C,. Later, for pmductlon runs Co may be computed once
and kept in a table for being read in for slightly different sized 5° equal area
blocks instead of being computed again and again. A similar approach was
used by Rapp (1977).

3.4 Recovery of 5° Residual Anomalies

Based on the numerical tests described in Section 3.3, the prediction of
each residual anomaly (and we now call them simply as anomalies) was done one
at a time considering T, data up to a spherical distance of 3.°5 from the center
of the 5° block. All data from four GEOS-3 revolutions 240, 254, 439 and 453
shown in Figure 3.1 which fell inside the 3.°5 spherical distance was used to
predict eight anomalies individually. The time interval of data was 30 seconds
with an assumed standard deviation of 0.6 mgals. The point covariances were
computed as detailed in Section 2.3 and covariances involving the mean anomaly
were computed by numerical integration after subdividing the 5° anomaly into
25 subdivisions. The estimated standard deviation of the predicted anomaly was
however computed with the variance C, of the mean anomalies of the given
block size being computed with 100 subdlvxsions. As discussed in Section 2. 4,
smoothed value of the residual range-rate R was obtained by fitting the raw R
data in the least squares sense by a cubic spline function with fixed spline knots
at a spacing of 100 seconds. The R (= T,) data obtained by analytical differ-
entiation of the spline function was not filtered any further for removal of any
linear trend due to errors in initial state vectors.

The predicted residual anomalies were examined against their expected
values (Table 3.1) for three cases, i.e. against values which were determ ined
by altimeter data, or terrestrial data, or by the potential coefficients in the
PGS 110 field. The predicted anomalies are listed in Table 3.4 along with the
expected values based on altimeter data, and the anomaly discrepancies. The
estimated standard deviation of the predicted anomaly is also given.
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Table 3.4 Comparison of Predicted Anomalies with Altimeter Anomalies

Seq. 5 = P ~ Residual Anom. (mgals) Std. Devu.

No. @ @5 A& A xpected Predicted Discrepancy | (mgals)

401 35 30 283 277 11 4 -7 7

402 35 30 289 283 -11 -8 3 6

464 30 25 281 276 16 11 -5 7 i

465 30 25 287 281 3 4 1 5 ‘

530 25 20 279 274 -3 6 9 6 i

531 25 20 285 279 23 11 -12 S

598 20 15 277 271 0 -6 -6 4

599 20 15 282 277 9 5 -4 7
R.M.S. Value in mgals 12 7 7 (Meaw; 6

Summary statistics of the comparison of the predicted anomalies with each
of the three expected values are given in Table 3.5. This consists of the R, M.S.
values of the expected anomalies, predicted anomalies and the maximum, min-
imum, mean and R, M.S, value of the anomaly discrepancies. For comparison
between the three cases, correlation coefficient, p, between the predicted and
expected anomalies is also given.

(3.3) p = \i AAg', E(Ag'g)/n)/ ((ZA‘\g',a/n>E (iE(Ag',f/n)%>
=1 = =1

The standard deviation of the predicted anomalies is already given in Table 3. 4.

Table 3.5 Summary Comparison of Predicted ‘Anomalies with Altimeter,
Terrestrial and PGS 110 Anomalies

lComparlson with| R.M.S. R. M.S. Anomaly Discrepancy (mgals){ Corr.
Expected Predicted - : Coeff.
Anomalies from Value (mgals) [Value (mgals) Max. [Min, |Mean |R.M.S. o
Altimeter data 12 7 9 |-12 -3 7 0.85
Terrestrial data 13 7 12 [ -16 -3 8 0.79
P.G.S.110 field 7 7 8 |-8 0 5 0.71

For comparison of predicted anomalies with altimeter anomalies, the
R. M.S. value of the predicted anomalies is lower (7 mgals instead of expected
12 mgals), because of few GEOS~3 revolutions directly over the predicted anom-
alies. The lack of revolutions also shows up as mean anomaly discrepancy
being -3 mgals, primarily because of predicted anomaly 531 being only 11 instead
of 23 mgals (Table 3.4). However, inspite of insufficient density of observations,
the effectiveness of the prediction procedures is borne out by R. M.S, anomaly
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discrepancy (7 mgals) being comparable to the mean of estimated standard
deviation of predicted 5° anomalies (6 mgals), and the high correlation coeffic-
ient, 0.85, of predicted and expected anomalies.

The predicted anomalies agree better with altimeter anomalies than with
terrestrial anomalies. At first sight, it might appear that the predicted anom-
alies agree most closely (except for lower correlation coefficient p) with PGS
110 anomaljes. This is so because the PGS 110 field was complete only up to
degree and order 30, and therefore inadequate to recover the 5° anomalies
(note the low R.M.S. value of 7 mgals for the residual 5° anomalies implied by
PGS 110). Because of insufficient data, the R, M.S. value of the predicted
anomalies is also low, and therefore the predicted and PGS 110 anomalies ap-
pear to agree more closely.

It is of great interest to determine if the predicted anomalies in this
report are an improvement over the anomalies implied by PGS 110 field. This
is shown in Table 3.6 with statistics similar to Table 3.5. However, we now
show the comparison of both the predicted anomalies and PGS 110 anomalies
with the anomalies determined from altimeter data.

Table 3.6 Improvement of Predicted Anomalies over Anomalies Implied by
PGS 110 Field. Comparison with Altimeter Anomalies.

Comparison with R.M.S. Value (mgals) Anomaly Discrepancy | Corr.
hltimeter Anomalies |Altimeter] Predicted/ (mgals) Coeff,
of Anomalies|PGS 110 Anom( Max.| Min. Mean|R.M. S )
redicted Anomalies 12 7 9 |-12| -3 7 0.85
GS 110 Anomalies 12 7 10 | -21 -3 9 0.62

We note that inspite of insufficient density of observations (Figure 3.1), the
predicted anomalies agree much better with the altimeter anomalies, as compared
to the agreement of PGS 110 anomalies with the altimeter anomalies. It is expected
that the agreement of predicted anomalies with altimeter anomalies would be sig-
nificantly improved if there was greater density of observation.

4, Saummary and Conclusions

The doppler signal count in SST provides a direct measure of the range-
rate sum (Ry) from GEOS-3 to ATS-6 to the ground station in the earth's
gravitational field, The range-rate (R) from GEOS-3 to ATS-6 in the anomalous
field T is obtained by subtracting from RS a computed value of range-rate sum
(l.?.c) based on the computed orbits of the two satellites in the normal reference
gravitational field, U. U was taken complete to degree and order 12 in PGS 110
field (Lerch, 1976) and the force model (including solar radiation pressure, luni-
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solar gravitation, atmospheric drag, etc.) completely described the motion of
ATS-6. The raw R values had 'observational' noise due to doppler count
being in the 'destruct' mode in the revolutions used for this study, besides any
residual errors in the 'converged' initial state vectors used for integrating the
orbits of the two satellites.

The raw R values were filtered of the 'moise’ and smoothed by fitting them
with a cubic spline function with fixed knots. The R, M. S. value of residua.s a‘ter
the spline fit (i.e. R.M.S, value of the noise) for 4 revolutions used in this studi,
varied from 0. 06 to 0.10 cm/sec., and was equal to or larger than the sr:oothod
R values which had R. M. S. value from 0.06 to 0.07 cm/sec. (Table 3.2). The
prediction of anomalies from R (time-derivative of smoothed R ) was the.cofore
severely limited by the data noise. It is expected that, in future, the 'non-de-
struct' doppler data would have a noise-level of about one-fourth that of ‘destruct’
doppler data (Marsh et als., 1977, p. 21). The prediction is also limited because
of pauciiy of present data (Figure 3. 1) as it consisted of just about one revolution
directly over the anomaly block being predicted. This resulted in a low R, M. S,
value of the predicted anomalies. An optimum data density (Hajela, 1977) would
have been about two times that used in this study.

The initial state vectors for the 4 revolutions were the same as used in
Marsh et als. (1977), and details about the data used for their 'convergence' is
given in Table 1 (ibid., p.26). Two approaches were tried to extract a 'better'
signal (of R) from the raw R values. One was to 'center' the observations
(Moritz, 1972, p. 78) for any systematic linear 'trend' in raw R values due to
residual errors in the 'converged' initial state vectors. The second was to fit
the raw R values with a spline function with variable knots (deBoor and Rice,
1968b). Both these approaches led to negative results. Firstly, any attempt
to remove a linear trend led to severe damping of 'observed' R values and thus
a loss of signal. We have to therefore accept an independent 'determination' of
the 'converged' values of initial state vectors based on long (several revolutions,
preferably over several days) time-span of different types of observations (Hajela,
1977). Secondly, the spline function with fixed knots was preferable to approximate
the raw R values, as the variable knots led to large and sudden changes in the
spline slope, i.e. in R. There was greater need to choose the 'smoothing' over
'fitting' of raw R values out of the conflicting requirements of these two proc-
esses in obtaining R values.

The residual acceleration R in the anomalous field T represents the v
projection of its gradient vector, VT, at GEOS-3 in the 'line of sight' GEOS-3
to ATS-6 in the 'hi-lo' SST (equation (2.5) ). The auto-covariances of the three
components of VT in the radial, latitudinal and longitudinal directions and their s ]
cross-covariances with gravity anomalies were obtained from subroutine COVAX
(Tscherning, 1976). The direction cosines of the line of sight were determined
from the computed satellite orbits. The auto and cross-covariances of R could
then be computed rigorously, and this is a major contribution of this study. The
prediction of anomalies using these covariances, and the R values, follows from
equations (2. 19) and (2. 20).
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The numerical considerations in the prediction of anomalies have been
outlined in Section 3.3. The actual computational strategy based on these con-
siderations has been summarized in the beginning of Section 3.4. An important
finding is that these procedures lead to the computation of covariances with each
anomaly separately and therefore to the prediction of anomaly by collocation
independently of the prediction of neighboring anomalies. The correlation
coefficients between the predicted values of neighboring anomalies is almost
zero (Section 2, 6).

We realize that because of the paucity of data, and also due to the 'high'
noise-level of destruct doppler data, we cannot draw strong :onclusions from the
numerical results in Section 3.4. Nevertheless, Tables 3.4 and 3.5 clearly
demonstrate the effectiveness of the procedures developed in this study. 5°
anomalies can be recovered from the ATS-6/GEOS-3 SST doppler data with a
standard deviation of about 6 mgals. This is likely to improve further with
greater density of data,and with the use of 'mon-destruct' doppler data, It
is most interesting that inspite of the limitations of the data used in this study,
the predicted 5° anor.alies are an improvement (Table 3.6) over the anomalies
implied by the (30, 28) PGS 110 field.
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Appendix

{ Comparison of residual range-rate R (raw and smoothed data) and residual
f accelerations obtained in this study with those in Marsh et als, (1977).

The force field and the initial state vecotrs used in this study were pro-
vided by Marsh (1978), and are the same as in Marsh et als. (ibid.). The
differences in the raw R in this study and in Marsh et als. is perhaps due to
the difference in applying ionospheric corrections during preprocessing. The
smoothed R and R values were obtained by different procedures in the two
studies. In both studies, the data was generated every 10 seconds. This has
been extracted at 1 minute interval in the following tables.
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REVOLUTION 240

GEOS-3 Present Study Marsh et als. (1977)
; Observation Time Subsatellite Point !" in em/sec. ii ﬁ in cm/sec. 'ﬁ
|yYMMDD HHMM SEC| LAT. E.LONG |Raw |Smoothed|mgals | Raw |Smoothed|mgals
750426 2306 24, 38.4 285,9 -0.068 -0.101 -0.0 -0.074 -0.096 -0.1
750426 2307 24, 35.4 283.4 -0.235 -0.090 0.4 -0.242 -0.097 0.1
750426 2308 24, 32.4 280.9 -0.031 -0.059 0.7 -0.039 -0.066 0.7
750426 2309 24, 29.3 278.7 0.059 -0.009 0.9 0.050 -0.015 0.7
750426 2310 24. 26.2 276.5 0.039 0.053 1.1 0.029 0.042 1.0
750426 2311 24, 23.0 274.5 0.052 0.115 0.9 0.042 0.103 0.7
750426 2312 24. 19.8 272.5 0.200 0.149 0.1 0.189 0.125 -0.1
750426 2313 24, 16.7 270.6 0.132 0.116 -1.0 0.121 0.098 -0.6
750426 .-2314 24. 13.4 268.7 0.093 0.054 -0.9 0.081 0.050 -0.7
REVOLUTION 254

|

GEOS-3 Present Study Marsh et als. (1977) |

Otestvation Tims . jSubsatellite Polst | g "o omn/aec. ” R In cm/sec. & :

\

R
YYMMDD FHMM SEC| LAT. E.LONG |Raw (Smoothed| mgals| Raw |Smoothed| mgals

750427 2251 24 38.4 291.4 -0.032 0.046 0.2 -0.038 0.033 0.1

750427 2252 24, 35.4 288.8 0.186 0.036 -0.6 0.180 0.021 -0.5

750427 2253 24, 32,4 286.4 0.009 -0.016 -1.0 0.002 -0.021 -0.7 :
750427 2254 24, 29.3 284.1 0.03¢ -0.058 -0.2 0.027 -0.053 -0.3 |
750427 2255 24, 26.1 282.0 -0.137 -0.046 0.5 -0.145 -0.051 0.3 |
750427 2256 24, 23.0 279.9 0.031 -0.005 0.8 0.022 -0.013 0.7

750427 2257 24, 19.8 277.9 0.100 0.036 0.5 0.092 0.023 -0.4 5
760427 22568 24, 16.6 276.0 0.080 0.054 0.1 0.072 0.042 0.2 |
750427 2259 24, 13.4 274.2 0.191 0.064 0.4 0.182 0.065 0.4
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REVOLUTION 439

GEOS-3 Present Study Marsh et als. (1977)
Observation Time Subsatellite Point B incm/ane. " R in cm/sec. n
YYMMDD HHMM SEC| LAT. E.LONG ([Raw |[Smoothed|mgals | Raw |Smoothed| mgals
750511 0041 54. 37.7 285.9 0.060 -0.047 0.8 0.061 -0.061 ° 0.6
750511 0042 54. 34,7 283.4 -0.050 -0.034 -0.3 -0.049 -0.040 0.0
750511 0043 54. 31.6 281.0 -0.072 -0.053 -0.2 -0.072 -0.045 -0.1
750511 0044 54. 28.5 278.8 0,052 -0.041 0.6 0.053 -0.032 0.4
750511 0045 54. 25.4 276.7 0.068 0.012 1.2 0.069 0.017 1.0
750511 0046 54. 22,2 274.6 0.070 0.084 1.0 0.071 0.078 0.7
750511 0047 54. 19.1 272,7 0.026 0.108 -0.3 0.027 0.094 -0.2
750511 0048 54, 15.9 270.8 0.037 0.074 -0.6 0.038 0.077 -0.2
750511 0049 54, 12.7 268.9 -0.044 0.052 -0.2 -0.043 0.058 -0.4
REVOLUTION 453
GEOS-3 Present Study Marsh et als. (1977)
ervat v s
Obs ion Time Subsatellite Point R incm/sec. 5 R in em/sec. %
[YYMMDD HHMM SEC| LAT. E.LONG |Raw |Smoothed|mgals | Raw [Smoothed| mgals
750512 0026 34. 38,7 292,3 0.041 -0.046 -0.5 0.037 -0.038 -0.5
750512 0027 34, 35.7 289,7 -0.055 -0.059 0.0 -0.057 -0,059 -0.1
750512 0028 34, 32.6 287,3 -0.062 -0.056 0.0 -0.064 -0.060 0.0
750512 0029 34, 29.5 285,0 -0.084 -0.069 -0.6 ~0.086 -0.078 -0.5
750612 0030 34. 26.4 282.8 -0.132 -0.105 -0.4 -0.133 -0.100 0.0
750812 0031 34, 23.2 280.8 -0.085 -0.088 1,0 -0.055 -0.070 0.8
750512 0032 34, 20.1 278.8 0.083 -0.004 1.5 0.083 -0.007 1.0
750512 0033 34, 16.9 276.9 0.188 0.069 0.8 0.188 0.058 0.9
750512 0034 34, 13.7 275.0 0. 162 0.103 0.3 0.162 0.102 0.4
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